Biopsychology

Nervous System & Brain
Endocrine System
Nervous System

• Divisions of the Nervous System
• Types of Nerves
• Reflexes
Divisions of the Nervous System

- **Central NS**: coordinates activity of all parts of the body
 - Brain and Spinal Cord

- **Peripheral NS**: carries sensory and motor info to and away from the CNS
 - **Somatic**: stimulate skeletal muscle (voluntary)
 - **Autonomic**: stimulate smooth and heart muscles (involuntary)
 - **Sympathetic**: pumps you up; “flight or flight”
 - **Parasympathetic**: calms you down; “rest & digest”
Types of Nerves

- **Afferent Neurons/Sensory Nerves**
 - Take info from the sensory receptors to CNS

- **Efferent Neurons/Motor Nerves**
 - Take info from CNS to muscles and glands

- **Interneurons/Association Neurons**
 - Neurons within the CNS
 - Middlemen between Afferent & Efferent

- **Remember “SAME”**
Types of Nerves

- **Neurons vs. Glial Cells**
 - Neurons send electrochemical messages
 - Glial cells support and nourish neurons
Reflexes

- Normal nervous system transmissions
 - Afferent → Spinal Cord → Brain → Spinal Cord → Efferent

- Reflexes
 - Afferent → Interneurons in Spinal Cord → Efferent
 - Brain gets message after spinal cord acts
The Neuron

• Structure of the Neuron
• Neurotransmitters
• Synaptic Transmission
Structure of the Neuron

- Dendrites
- Cell body
- Nucleus
- Axon hillock
- Axon
- Signal direction
- Synapse
- Myelin sheath
- Synaptic terminals
- Presynaptic cell
- Postsynaptic cell
Structure of the Neuron

- **Dendrites**
 - Contain receptor sites which receive neurotransmitters from the presynaptic neuron
Structure of the Neuron

• **Soma**
 – aka cell body; contains cytoplasm; nucleus
Structure of the Neuron

- **Nucleus**
 - directs production of neurotransmitters; contains DNA
Structure of the Neuron

- **Axon**
 - what the neuron impulse travels down once threshold has been reached
Structure of the Neuron

- **Myelin Sheath**
 - fatty tissue which insulates the axon; speeds up the neural impulse; made by glial cells
Structure of the Neuron

• **Nodes of Ranvier**
 – the spaces on the axon which are not covered by myelin; where ion flow occurs for depolarization
Structure of the Neuron

- **Axon Terminal/Terminal Button**
 - contains neurotransmitters which are released after depolarization and neural impulse
Structure of the Neuron

- **Vesicles**
 - contained within the axon terminals, these contain neurotransmitters, they surface and release neurotransmitters after depolarization
Structure of the Neuron

- **Neurotransmitters**
 - contained in the vesicles, and are released into the synapse to stimulate their respective receptor sites on the postsynaptic neuron
Structure of the Neuron

• **Synapse**
 – fluid-filled gap between terminal buttons of the presynaptic neuron and the dendrites of the postsynaptic neuron
Neurotransmitters

• **Excitatory vs. Inhibitory**
 - **Excitatory**: makes receiving neuron MORE likely to meet threshold and have an action potential
 - **Inhibitory**: makes receiving neuron LESS likely to meet threshold and have an action potential
Neurotransmitters

• **Serotonin**
 – Sleep and dreaming
 – Mood
 – Appetite
 – Sexual behavior
 – Related to Depression (too little)
Neurotransmitters

- Acetylcholine (ACh)
 - Learning
 - Memory
 - Voluntary motor activity
 - Related to Alzheimer’s Disease (too little)
Neurotransmitters

• **Dopamine**
 – Involuntary motor activity
 – Reward pathway
 – Motivation
 – Cognition
 – Related to Schizophrenia (too much) and Parkinson’s Disease (too little)
Neurotransmitters

• Gamma-Aminobutyric Acid (GABA)
 – The primary inhibitory neurotransmitter in the body
 – Related to anxiety and mood disorders (too little)
Neurotransmitters

- **Endorphins**
 - Body’s natural painkiller
 - Pleasure
 - Lowered levels result from opiate use
Neurotransmitters

• **Glutamate**
 – The primary excitatory neurotransmitter in the body
 – Learning
 – Memory
Neurotransmitters

• **Noradrenaline**
 – Aka: Norepinephrine
 – Stress Response
 – Blood pressure
 – Heart rate
 – Also a hormone
Synaptic Transmission

- **Resting Potential**
 - possible for the neuron to fire; axon has negative charge inside and outside is more positive; K^+ are on the inside of the axon, Na^+ is on the outside
Synaptic Transmission

• **Action Potential**
 – change in potential across the neuron’s membrane; the electrical impulse; depolarization of ions down the axon
Synaptic Transmission

• **Threshold**

 – minimum stimulation required to trigger a neural impulse
Synaptic Transmission

- **Depolarization**
 - Na^+ ions rush into the cell, changing the polarity on each side of the membrane, occurs on Nodes of Ranvier
Synaptic Transmission

• Repolarization
 – after Na\(^+\) ions have rushed into the cell, K\(^+\) ions rush out of the cell to restore the balance and the original polarity
Synaptic Transmission

• **Refractory Period**
 – period in which the cell cannot fire while the Na\(^+\) ions and the K\(^+\) ions return to their original locations via Na\(^+\)/K\(^+\) pumps
Synaptic Transmission

- **Hyperpolarization**
 - when axon is repolarizing, more K^+ ions leave the cell, causing the cell to become MORE negative than before it started
Synaptic Transmission

• All-or-None Principle
 – a neuron will fire with its full intensity or not at all
Synaptic Transmission

• Electrochemical Reaction
 – Electrical *within* the neuron (impulse)
 – Chemical *between* the neurons (neurotransmitters)
The Brain

• Examining the Brain
• Structures of the Brain
• Hemispheric Specialization
Studying the Brain

• Accidents & Case Studies
 – When people acquire some sort of brain damage, psychologists learn about the functions of the brain
 – Famous Example: Phineas Gage
 • Tamping rod flew through his frontal lobe
 • Frontal lobe research was furthered because of this new information
Studying the Brain

• **Lesions**
 – Destruction of brain tissue lets us know the function of that part of the brain
 – Accidental or purposeful
Studying the Brain

• **Electroencephalography (EEG)**
 – creates image of brain wave activity by eliciting evoked potentials
 – Function only
Studying the Brain

- **Positron Emission Tomography (PET)**
 - creates image which looks at glucose usage in the brain after injection of radioactive form of glucose
 - Function only
Studying the Brain

• **Computerized Axial Tomography (CAT/ CT)**
 – provides image of brain structure including soft tissue and bones; specialized type of x-ray
 – Structure only
Examining the Brain

• Magnetic Resonance Imaging (MRI)
 – uses magnetic fields in order to examine structure of brain tissues
 – Structure only
Examining the Brain

- **Functional Magnetic Resonance Imaging (fMRI)**
 - brain imaging technique which provides information about both structure and function
Examining the Brain

- **Transcranial Magnetic Stimulation (TMS)**
 - Stimulation of areas of the brain using magnetic field to influence activity of neurons (to depolarize or hyperpolarize)
Structures of the Brain

• **Hindbrain**
 – Brainstem
 • Medulla
 – in charge of respiration, blood pressure, heart rate
 • Pons
 – helps relay sensory info., has a role in controlling arousal and dreaming
• **Reticular Formation**
 – controls awareness and arousal
Structures of the Brain

- Hindbrain
 - Cerebellum
 - coordinates motor control and maintains balance and posture
Structures of the Brain

- **Forebrain**
 - Thalamus
 - sensory switchboard of the brain for all senses except olfaction
Structures of the Brain

- **Forebrain**
 - Limbic System
 - Hippocampus
 - converts info from STM to LTM
 - Hypothalamus
 - homeostasis, regulates hunger and thirst, and sexual behavior, controls pituitary gland
 - Amygdala
 - role in emotions, especially anger and fear
Structures of the Brain

• Forebrain
 – Cerebral Cortex - Association Areas
 • Frontal Lobe
 – personality, problem-solving, initiation, judgment, impulse & emotion control, speech (L)
 • Temporal Lobe
 – auditory perception, memory, facial recognition (R), language comprehension (L)
 • Parietal Lobe
 – spatial processing (R), math (L), sensory organization
 • Occipital Lobe
 – visual perception
Structures of the Brain

- Forebrain
 - Cerebral Cortex - Association Areas

exterior of the cerebrum from the left side
Structures of the Brain

• Forebrain
 – Cerebral Cortex - Sensorimotor Areas
 • Motor Cortex
 – controls voluntary movement (frontal)
 • Somatosensory Cortex
 – skin sense, tactile sensation (parietal)
 • Visual Cortex
 – visual processing (occipital)
 • Auditory Cortex
 – Auditory processing (temporal)
Structures of the Brain

- Forebrain
 - Cerebral Cortex - Sensorimotor Areas
Structures of the Brain

Motor cortex
Somatic sensory cortex

Motor cortex (precentral gyrus)

Somatic sensory cortex (postcentral gyrus)
Structures of the Brain

• Forebrain
 – Cerebral Cortex – Language Areas
 • Broca’s Area
 – part of the frontal lobe on left side; controls the ability to form words
 • Wernicke’s Area
 – part of the temporal lobe on left side; controls the ability to comprehend language
 • Angular Gyrus
 – related to reading, turns visual symbols to auditory code
 – Aphasia
 • damage to area responsible for language
Structures of the Brain

- Forebrain
 - Cerebral Cortex
 - Language Areas

Speech Areas:
- motor cortex
- Wernicke's area
- angular gyrus
- visual cortex
- Broca's area
- auditory cortex
Structures of the Brain

• Gyri vs. Sulci
 – Gyrus
 • peak in cerebral cortex
 – Sulcus
 • valley of cerebral cortex
 – Wrinkles provide more surface area for cerebral cortex
Structures of the Brain

• White vs. Grey Matter
 – White Matter
 • neural tissue containing mostly myelinated axons
 • relays info. to cerebral cortex
 – Grey Matter
 • closely packed neuron cell bodies on the surface of the brain
The Brain

• **Corpus Callosum**
 – White matter structure which connects left and right hemispheres
 – Allows communication between hemispheres
Hemispheric Specialization

- **Longitudinal Fissure**
 - separates left and right hemispheres

- **Contralaterality**
 - one side of brain controls the other side of the brain
Hemispheric Specialization

• **Left vs. Right Brain**

 – **Left**

 • analytical, speech (frontal), language comprehension (temporal), sequential, logical, interprets what is in right visual field (occipital), controls right side of body

 – **Right**

 • intuitive, holistic, language emphasis, facial recognition (temporal), spatial interpretation (Parietal), creativity, art, music appreciation, interprets what is in left visual field (occipital), controls left side of body
Hemispheric Specialization

- Split Brain Research
 - Michael Gazzaniga & Roger Sperry’s Research
The Brain

- **Brain Plasticity**
 - Ability for brain to make up for damage by having neurons of brain take on functions of damaged areas
 - Age-dependent (doesn’t occur as well in older brains)
Endocrine System

- Glands
- Hormones
Glands

• Pineal Gland
 – Produces melatonin (according to lightness or darkness of environment)
 – Helps modulate sleep/wake cycle
Glands

• **Pituitary Gland**
 – Produces Human Growth Hormone (HGH)
 – Regulates homeostasis
 – Regulates sexual development & functioning
 – Contributes to physical growth
 – Regulates water in the body
Glands

• **Thyroid Gland**
 – Produces Thyroxine
 – Controls metabolism
Glands

• Parathyroid Glands
 – Regulate calcium levels in the body
 (remember, calcium is necessary for neurons
to fire)
Glands

- **Adrenal Glands**
 - Produce noradrenaline, adrenaline and cortisol
 - Regulate responses to stress and “fight or flight”
Glands

- **Pancreas**
 - Produces insulin and glucagon
 - Regulates blood glucose level
 - Aids in digestion
Glands

• Ovaries
 – Produce estrogen and progesterone
 – Produce ova (eggs) for reproduction
 – In charge of the production of secondary sex characteristics (i.e. breasts, hips)
 – The female counterpart of the testes (male gonads)
Glands

• Testes
 – Produce testosterone
 – Produce sperm for reproduction
 – In charge of the production of secondary sex characteristics (i.e. facial hair, deep voice)
 – The male counterpart of the ovaries (female gonads)
Glands

• **Hypothalamus**
 – Controls pituitary gland
 – Secretes hormones related to hunger
 – Link between the endocrine & nervous systems
Hormones

• Melatonin
 – Produced by the pineal gland
 – Helps control sleep/wake cycle
 – Production is inhibited by light and facilitated by dark
Hormones

• **Human Growth Hormone (HGH)**
 – Produced by the pituitary gland
 – Stimulates growth and cell reproduction
Hormones

• Adrenaline
 – Aka epinephrine
 – Produced by the adrenal glands
 – Plays role in stress reactions & “fight or flight”
 – Pumps body up (Sympathetic NS activity)
Hormones

- **Noradrenaline**
 - Aka norepinephrine
 - Produced by the adrenal glands
 - Plays role in stress reactions & “fight or flight”
 - Pumps body up (Sympathetic NS activity)
 - Also a neurotransmitter
Hormones

• **Cortisol**
 – Produced by the adrenals
 – Released in stressful situations
 – Involved in “fight or flight” response
Hormones

• **Insulin**
 – Produced in the pancreas
 – Regulates glucose metabolism and blood glucose levels
 – Released when blood glucose is elevated, decreases glucose level
Hormones

• Glucagon
 – Produced in the pancreas
 – Released when blood glucose is low, increases glucose level
Hormones

• **Estrogen**
 – Produced by ovaries
 – Primary female sex hormone
 – Aids in sexual development and functioning
Hormones

• **Progesterone**
 – Produced by ovaries
 – Involved with menstrual cycle and pregnancy
Hormones

- **Testosterone**
 - Produced by the testes
 - Primary male sex hormone
 - Aids in sexual development and functioning
 - Linked to aggression
Hormones

- **Thyroxine**
 - Produced in thyroid
 - Controls rate of bodily metabolic processes