Biopsychology

Nervous System & Brain Endocrine System

Nervous System

- Divisions of the Nervous System
- Types of Nerves
- Reflexes

Divisions of the Nervous System

- <u>Central NS</u>: coordinates activity of all parts of the body
 - Brain and Spinal Cord
- <u>Peripheral NS</u>: carries sensory and motor info to and away from the CNS
 - <u>Somatic</u>: stimulate skeletal muscle (voluntary)
 - Autonomic: stimulate smooth and heart muscles (involuntary)
 - Sympathetic: pumps you up; "flight or flight"
 - Parasympathetic: calms you down; "rest & digest"

Types of Nerves

- Afferent Neurons/Sensory Nerves
 - Take info from the sensory receptors to CNS
- Efferent Neurons/Motor Nerves
 - Take info *from CNS* to muscles and glands
- Interneurons/Association Neurons
 - Neurons within the CNS
 - Middlemen between Afferent & Efferent
- Remember "SAME"

Types of Nerves

Neurons vs. Glial Cells

- Neurons send electrochemical messages
- Glial cells support and nourish neurons

Neuroglial Cells of the CNS

Reflexes

- Normal nervous system transmissions
 - Afferent → Spinal Cord → Brain → Spinal
 Cord → Efferent
- Reflexes
 - Afferent → Interneurons in Spinal Cord →
 Efferent
 - Brain gets message after spinal cord acts

The Neuron

- Structure of the Neuron
- Neurotransmitters
- Synaptic Transmission

Dendrites

 Contain receptor sites which receive neurotransmitters from the presynaptic neuron

Soma

– aka cell body; contains cytoplasm; nucleus

Nucleus

directs production of neurotransmitters;
 contains DNA

Axon

 what the neuron impulse travels down once threshold has been reached

Myelin Sheath

 fatty tissue which insulates the axon; speeds up the neural impulse; made by glial cells

Nodes of Ranvier

 the spaces on the axon which are not covered by myelin; where ion flow occurs for depolarization

Axon Terminal/Terminal Button

 contains neurotransmitters which are released after depolarization and neural impulse

Vesicles

 contained within the axon terminals, these contain neurotransmitters, they surface and release neurotransmitters after depolarization

Neurotransmitters

 contained in the vesicles, and are released into the synapse to stimulate their respective receptor sites on the postsynaptic neuron

Synapse

 fluid-filled gap between terminal buttons of the presynaptic neuron and the dendrites of the postsynaptic neuron

Excitatory vs. Inhibitory

Excitatory: makes receiving neuron MORE likely to meet threshold and have an action potential

 Inhibitory: makes receiving neuron LESS likely to meet threshold and have an action potential

Serotonin

- Sleep and dreaming
- -Mood
- Appetite
- Sexual behavior
- Related to Depression (too little)

Acetylcholine (ACh)

- Learning
- Memory
- Voluntary motor activity
- Related to Alzheimer'sDisease (too little)

Dopamine

- Involuntary motor activity
- Reward pathway
- Motivation
- Cognition
- Related to Schizophrenia(too much) and Parkinson'sDisease (too little)

Gamma-Aminobutyric Acid (GABA)

- The primary inhibitory neurotransmitter in the body
- Related to anxiety and mood disorders (to little)

Endorphins

- Body's natural painkiller
- Pleasure
- Lowered levels result from opiate use

Glutamate

- The primary excitatory neurotransmitter in the body
- Learning
- Memory

Noradrenaline

- Aka: Norepinephrine
- Stress Response
- Blood pressure
- Heart rate
- Also a hormone

Resting Potential

 possible for the neuron to fire; axon has negative charge inside and outside is more positive; K⁺ are on the inside of the axon, Na⁺ is on the outside

Action Potential

 change in potential across the neuron's membrane; the electrical impulse; depolarization of ions down the axon

Threshold

 minimum stimulation required to trigger a neural impulse

Depolarization

 Na⁺ ions rush into the cell, changing the polarity on each side of the membrane, occurs on Nodes of Ranvier

Repolarization

 after Na⁺ ions have rushed into the cell, K⁺ ions rush out of the cell to restore the balance and the original polarity

Refractory Period

 period in which the cell cannot fire while the Na⁺ ions and the K⁺ ions return to their original locations via Na⁺/K⁺ pumps

Hyperpolarization

 when axon is repolarizing, more K⁺ ions leave the cell, causing the cell to become MORE negative than before it started

All-or-None Principle

 a neuron will fire with its full intensity or not at all

Electrochemical Reaction

- Electrical *within* the neuron (impulse)
- Chemical *between* the neurons (neurotransmitters)

The Brain

- Examining the Brain
- Structures of the Brain
- Hemispheric Specialization

Accidents & Case Studies

- When people acquire some sort of brain damage, psychologists learn about the functions of the brain
- Famous Example: Phineas Gage
 - Tamping rod flew through his frontal lobe
 - Frontal lobe research was furthered because of this new information

Lesions

- Destruction of brain tissue lets us know the function of that part of the brain
- Accidental or purposeful

Electroencephalography (EEG)

- creates image of brain wave activity by eliciting evoked potentials
- Function only

Positron Emission Tomography (PET)

 creates image which looks at glucose usage in the brain after injection of radioactive form of

glucose

Function only

- Computerized Axial Tomography (CAT/ CT)
 - provides image of brain structure including soft tissue and bones; specialized type of x-ray
 - Structure only

Examining the Brain

Magnetic Resonance Imaging (MRI)

- uses magnetic fields in order to examine structure of brain tissues
- Structure only

Examining the Brain

- Functional Magnetic Resonance Imaging (fMRI)
 - brain imaging technique which provides information about both structure and function

Examining the Brain

- Transcranial Magnetic Stimulation (TMS)
 - Stimulation of areas of the brain using magnetic field to influence activity of neurons (to depolarize or hyperpolarize)

Hindbrain

- Brainstem
 - Medulla
 - in charge of respiration,
 blood pressure, heart
 rate
 - Pons
 - helps relay sensory info.,
 has a role in controlling Ponsiarousal and dreaming
 - Reticular Formation
 - controls awareness and arousal

Hindbrain

- Cerebellum

coordinates motor control and maintains balance

and posture

Forebrain

- Thalamus

sensory switchboard of the brain for all senses

except olfaction

Forebrain

- Limbic System
 - Hippocampus

converts info from STM to LTM

Hypothalamus

homeostasis, regulates
 hunger and thirst, and
 sexual behavior,
 controls pituitary gland

Amygdala

role in emotions,especially anger and fear

Forebrain

- Cerebral Cortex Association Areas
 - Frontal Lobe
 - personality, problem-solving, initiation, judgment, impulse & emotion control, speech (L)
 - Temporal Lobe
 - auditory perception, memory, facial recognition (R),
 language comprehension (L)
 - Parietal Lobe
 - spatial processing (R), math (L), sensory organization
 - Occipital Lobe
 - visual perception

Forebrain

Cerebral Cortex - Association Areas

exterior of the cerebrum from the left side

Forebrain

- Cerebral Cortex Sensorimotor Areas
 - Motor Cortex
 - controls voluntary movement (frontal)
 - Somatosensory Cortex
 - skin sense, tactile sensation (parietal)
 - Visual Cortex
 - visual processing (occipital)
 - Auditory Cortex
 - Auditory processing (temporal)

Forebrain

Cerebral Cortex - Sensorimotor Areas

Forebrain

- Cerebral Cortex Language Areas
 - Broca's Area
 - part of the frontal lobe on left side; controls the ability to form words
 - Wernicke's Area
 - part of the temporal lobe on left side; controls the ability to comprehend language
 - Angular Gyrus
 - related to reading, turns visual symbols to auditory code
- Aphasia
 - damage to area responsible for language

Forebrain

Cerebral Cortex – Language Areas

• Gyri vs. Sulci

- Gyrus
 - peak in cerebral cortex
- Sulcus
 - valley of cerebral cortex
- Wrinkles provide more surface area for cerebral cortex

White vs. Grey Matter

- White Matter
 - neural tissue containing mostly myelinated axons
 - relays info. to cerebral cortex
- Grey Matter
 - closely packed neuron cell bodies on the surface of the brain

The Brain

Corpus Callosum

- White matter structure which connects left and right hemispheres
- Allows communication between hemispheres

Hemispheric Specialization

- Longitudinal Fissure
 - separates left and right hemispheres
- Contralaterality
 - one side of brain controls the other side of the brain

Hemispheric Specialization

• Left vs. Right Brain

- Left

 analytical, speech (frontal), language comprehension (temporal), sequential, logical, interprets what is in right visual field (occipital), controls right side of body

- Right

• intuitive, holistic, language emphasis, facial recognition (temporal), spatial interpretation (Parietal), creativity, art, music appreciation, interprets what is in left visual field (occipital), controls left side of body

Hemispheric Specialization

Split Brain Research

– Michael Gazzaniga & Roger Sperry's Research

The Brain

Brain Plasticity

- Ability for brain to make up for damage by having neurons of brain take on functions of damaged areas
- Age-dependent (doesn't occur as well in older brains)

Endocrine System

- Glands
- Hormones

Pineal Gland

- Produces melatonin (according to lightness or darkness of environment)
- Helps modulatesleep/wake cycle

Pituitary Gland

- Produces Human Growth Hormone (HGH)
- Regulates homeostasis
- Regulates sexual development & functioning
- Contributes to physical growth
- Regulates water in the body

Thyroid Gland

- Produces Thyroxine
- Controls metabolism

Parathyroid Glands

Regulate calcium levels in the body
 (remember, calcium is necessary for neurons

to fire)

Adrenal Glands

Produce noradrenaline, adrenaline and cortisol

Regulate responses to stress and "fight or

flight"

Pancreas

- Produces insulin and glucagon
- Regulates blood glucose level
- Aids in digestion

Ovaries

- Produce estrogen and progesterone
- Produce ova (eggs) for reproduction
- In charge of the production of secondary sex characteristics (i.e. breasts, hips)
- The female counterpart of the testes (male gonads)

Testes

- Produce testosterone
- Produce sperm for reproduction
- In charge of the production of secondary sex characteristics (i.e. facial hair, deep voice)
- The male counterpart of the ovaries (female gonads)

Hypothalamus

- Controls pituitary gland
- Secretes hormones related to hunger
- Link between the endocrine & nervous systems

Hypothalamus

Melatonin

- Produced by the pineal gland
- Helps control sleep/wake cycle

- Production is inhibited by light and facilitated

by dark

Human Growth Hormone (HGH)

- Produced by the pituitary gland
- Stimulates growth and cell reproduction

Adrenaline

- Aka epinephrine
- Produced by the adrenal glands
- Plays role in stress reactions & "fight or flight"
- Pumps body up (Sympathetic NS activity)

Noradrenaline

- Aka norepinephrine
- Produced by the adrenal glands
- Plays role in stress reactions & "fight or flight"
- Pumps body up (Sympathetic NS activity)
- Also a neurotransmitter

Cortisol

- Produced by the adrenals
- Released in stressful situations
- Involved in "fight or flight" response

Insulin

- Produced in the pancreas
- Regulates glucose metabolism and blood glucose levels
- Released when blood glucose is elevated, decreases glucose level

Glucagon

Produced in the pancreas

– Released when blood glucose is low, increases

glucose level

Estrogen

- Produced by ovaries
- Primary female sex hormone
- Aids in sexual development and functioning

Progesterone

- Produced by ovaries
- Involved with menstrual cycle and pregnancy

Testosterone

- Produced by the testes
- Primary male sex hormone
- Aids in sexual development and functioning
- Linked to aggression

Thyroxine

- Produced in thyroid
- Controls rate of bodily metabolic processes

